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Resonance poles and width distribution for time-reversal transport
through mesoscopic open billiards
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A number of resonance poles are computed for time-reversal ballistic transport through chaotic and inte-
grable mesoscopic billiards coupled to a pair of single-channel leads. The width distribution of resonances is
rigorously compared with the random-matrix-theory prediction, which has been recently obtained for time-
reversal chaotic open systems with overlapping resonances. In the case of chaotic open billiards, the distribu-
tion functions show good agreement with the random-matrix-theory prediction in all ranges of the width. In the
case of integrable open billiards, however, there exist some deviations and the agreement is perceived only for
the tail of the distribution functions. This is understood quantitatively in terms of classical decay-time
distributions.

PACS number~s!: 05.45.Mt, 05.60.Gg, 73.23.Ad
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The study of chaotic open billiards is interesting beca
fully chaotic and integrable motion of noninteracting pa
ticles inside ballistic cavities can be realized, simply depe
ing upon the design of its boundary. It is intriguing to stu
the effects of the underlying classical dynamics on quan
transport through such a system, in connection with an
plication to mesoscopic devices.

In general, quantum transport coefficients, such as c
ductance, in open billiards show ample oscillations as a fu
tion of external parameters, see, e.g.,@1,2#. This originates
from a sequential overlap of resonances in the cavity reg
lying inside the billiard. In order to better understand res
nance structures, it is necessary to identify poles and ana
their properties in detail. Gaspard and Rice, in their pione
ing papers, obtained the location of the exact poles in
complex wave number plane for the scattering of a po
particle from a chaoticconvexrepeller consisting of three
hard discs in a plane@3#. To the best of the author’s knowl
edge, only a few reports on the poles inconcaveopen bil-
liards have been recently published for integrable ca
@4–7# and a pseudointegrable case@8#. In the latter, the au-
thors numerically found resonances by using a sim
Hamiltonian model describing a time-reversal rectangu
microwave resonator perturbed with an attached ante
and attempted to compare the width distribution of the i
lated resonances with a random-matrix-theory predict
valid for the regime ofoverlappingresonances forchaotic
open systems withbrokentime-reversal symmetry@9#. Thus
we can say that our knowledge about statistical propertie
resonances for chaotic open billiards is far from satisfacto
in connection with random-matrix-theory predictions.

In this study, we numerically obtain a number of res
nance poles for chaotic and integrable open billiards. Th
we rigorously compare the width distribution of the res
nances with the exact analytical formula derived recently
the regime of overlapping resonances for chaotic open
tems with time-reversal symmetry@10#. Although the pole
parameterization of the scattering matrix cannot be uniqu
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determined by measuring cross sections in experiments w
the resonances become more and more overlapped@11,12#,
this study merely proposes analyses for future research.

The quantum open billiard we wish to study consists o
two-dimentional cavity coupled to continua by attached lea
that altogether supportM equivalent open channels. In
weakly @13# and imperfectlyopen limit, there have been
number of measurements on resonances of microwave c
ties and the system, in general, shows isolated resonan
They can be fitted by the Breit-Wigner formula@14# and
simply explained based on the eigenmodes and eigenf
tions of a closed counterpart of the cavity@15–19# ~plus
perturbations by antennas@8,20#!. When the cavity is fully
chaotic, the width distribution of such resonances is qu
generally expected to follow the so-calledx2 distribution
with parametern5M (n52M ) for systems with preserved
~broken! time-reversal symmetry. The casen51 is known as
the Porter-Thomas distribution@21# and has been shown t
be in agreement with experimental data@22#. On the other
hand, when the cavity is weakly butperfectlyopen, we com-
monly see inevitably overlapping resonances in quant
transport. This is the case in this paper.

We consider a Bunimovich stadium@23# and its deforma-
tions as chaotic billiards, and a circle and a square as i
grable billiards, respectively. The billiard is coupled to a p
of leads with a common widthd and their orientations are
not straightforward to avoid direct transmission; see Fig.
The stadium billiard is characterized by the radius of a se
circle a and the half-length of a straight sectionl. The aspect
ratio s[ l /a is continuously tunable, keeping the area of t
billiard A5pa214al fixed, which ensures the same degr
of resonance density for each billiard. For a closed stadi
the maximum Lyapunov exponent vanishes in the integra
limit ( s50) and reaches its maximum at the fully chao
limit ( s51) @24#. The limit s50 corresponds to the circle
billiard. In the following, we refer to the limits51 as the
stadium and to the casess50.99, 0.995, 1.005, and 1.01 a
its deformations, respectively. We use scaled lengths s
that the enclosed area for each of the billiards isA5p14
~i.e., l 5a51 for the stadium!. Therefore the length of the
sides of the square billiard isAp14. We choose a small lea

u
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width asd50.08, which corresponds to a weakly open b
liard where a particle entering through one lead dwells ins
the cavity region for a long time before exiting. Assumin
the ergodic billiards, the estimated decay length of a class
path-length spectrum isLd5140 @25#, which corresponds to
Ld /AA.52 bounces inside the cavity. On the other hand,
mixing length scale in the stadium billiard is expected to
Lm,100 @24#. ThusLd.Lm . Therefore the particle acquire
chaotic and nonchaotic features through multiple scatte
with specular reflections on the boundary of the cavity, a
this will affect its transport properties.

In quantum dynamics, the dc current passes through
leads. We choose the energy of the incoming wave so
only the first transverse mode in the leads is open. We s
the time-independent Schro¨dinger equation under Dirichle
boundary conditions based on the plane-wave-expan
method@26#, giving reflection and transmission amplitud
as a function of the energy. The resonances are due to
sibound states of the open billiard and they are identifi
with the poles of the corresponding scattering matrixS(E)
occurring at complex energiesEa5ER

a1 iEI
a (EI

a,0) for the
ath resonance. They are numerically obtained as the sing
points ofS(E) by scanningE on the meshed lower comple
plane. The positions and widths of the resonance states
given by ER

a and Ga(52uEI
au), respectively. In the follow-

ing, we will assumeS(E) to be a simple pole,;(E
2Ea)21, for E close to a resonance energy, and choose b
\ and the mass of particlem as unity for simplicity.

In the energy range investigated in this paper, we
observe a number of overlapping resonances, resultin
ample fluctuations in the transmission probabilityT as a
function of the real energyE of particles. To understand th
fluctuations in detail, the location of resonance poles is co
puted in the complex energy plane, and presented in pa
Fig. 2 for the open stadium and circle billiards. Each po
corresponds to an isolated resonance state. The quantum
cay length for the deepest poles shown in Fig. 2 is estima
using the lifetimetd

gm;\/G and the velocityv5A2ER /m as
Ld

qm[td
gm v.11215, which corresponds to 426 bounces

inside the cavity. We see that the resonance poles are pl

FIG. 1. Geometry of open billiards.~a! Stadium. ~b! Circle
~solid lines! and square~dotted lines!.
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irregularly in the complex energy plane in both cases, exc
a tendency to accumulate themselves on lines. This lin
structure simply comes from the coarseness of numer
data in the complex plane. We should also mention that so
of the poles closest to the real axis or to each other~i.e.,
almost degenerate! in the rangeEI*20.3 (EI*20.035 for
the open square billiard, not shown here! are missing be-
cause of a simple numerical reason. This means that man
the sharpest oscillations ofT(E) are not identified~see the
more accurate plot in Fig. 2!. The mean resonance spacingD
calculated from our data is 1.96, 2.08, and 2.58 for the s
dium and its deformations, the circle, and the square, res
tively. According to a simple comparison between Wey
density of states„;mA/(2p\2)… and 1/D, about 55% of the
eigenmodes are missing in the case of the stadium and
deformations, about 58% in the case of the circle, and ab
66% in the case of the square. As we see in Fig. 2, the o
circle billiard has a smaller number of sharp resonances t
the others~including the open square billiard not show
here!, which can be understood from the following. Whe
the cavity has a rotational symmetry, the coupling of wa
functions, c lead and ccav i ty , can easily induce rotationa

FIG. 2. Location of resonance poles in the complex ene
plane. The partial magnification shows a more accurate plot o
small region near the real axis.~a! Open stadium billiard.~b! Open
circle billiard.
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change ofccav i ty to try to hold parity conservation law with
each other locally at the openings, so that resonances in
an open billiard, in general, tend to be broad@27#.

Once we obtain the location of poles in our systems,
calculate the width distribution of resonances, where we
poles in the energy range 770<ER<1800 ~including 490
;565 poles!, 800<ER<1800 ~including 479 poles!, and
860<ER<2450~including 615 poles! for the stadium and its
deformations, the circle, and the square, respectively. On
other hand, the analytical expression of the width distribut
for the overlapping resonances was obtained employ
random-matrix theory first for chaotic open systems w
broken time-reversal symmetry@9#, and quite recently for
those with preserved time-reversal symmetry@10#. In the lat-
ter case, the distribution function of scaled resonance wid
y5(pEI /D) for perfectly open systems withM52 is given
in Ref. @10# by P(y,0)5„2y111(2y21) e4y

…/(4y3).
When we calculate the width distribution and compare
with this analytical expression, we find interesting features
its behavior, as we see in Fig. 3. In the case of chaotic o
billiards, P(G) follows G22 asymptotically forG@D while
it asymptotes to a constant forG!D, as is predicted in@10#.
We still notice small deviations for log10G&20.2 and
log10G*0.5. As previously mentioned, many of the res
nances forG52uEI u&0.6 were not identified in the calcula
tion, although they should also be included to compare w
the analytical result. The difference of log10P(G) between
the numerical and the analytical results for that region
roughly estimated as20.25 in Fig. 3~a!. This corresponds to
a 44% decrease ofP(G) and almost agrees with the estim
tion of the number of missing eigenmodes, as is mentio
above. Therefore we expect the decrease ofP(G) for
log10G&20.2 in the numerical result, and relatively the i
crease by a constant for a largerG region as a result of the
probability conservation ofP(G). ~This argument also hold
true in the case of integrable open billiards.! Taking this into
account, it seems reasonable to say thatP(G), computed for
the chaotic open billiards, is in good agreement with
analytical prediction by random-matrix theory in all th
ranges of widthG shown in Fig. 3. In the case of integrab
open billiards,P(G) also seems to followG22 asymptoti-
cally for G@D; however, for the smallerG region the devia-
tions from the analytical expression by the random-ma
theory are prominent and the behavior no longer shows
universality@see Figs. 3~b! and 3~c!#. This nonuniversal be-
havior is typical for integrable open billiards and especia
sensitive to the symmetry restriction of the system. For
ample, in the case of the open circle billiard, the rotatio
symmetry of the cavity boundary results in a considera
reduction of the number of resonances with smallG, as men-
tioned above.

One may show that the physical meaning of the pow
law tail, ;G22, turns out to be due to classical processes
exponential escape typical for fully chaotic systems@28#, as
was pointed out in@9#. In weakly open billiards, however
such an exponential escape is observed not only for cha
cases@2#, but also for integrable cases@29# in a time scale
corresponding to a path length up to at least a few hundr
Using a relationt'\/G52p\/(2yD), this escape time dis
tribution P(t) dt5(1/td)exp(2t/td) dt with a lifetimetd can
be transformed into aclassicalwidth distribution@30#:
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Pcl~y,0!5
c

y2
expS c

yD , ~1!

wherec5pGcl /(2D) andGcl[\/td5(\/Ld)A2ER /m. For
uyu@1, Pcl(y)}y22. In Fig. 3, Eq. ~1! is plotted with a
dotted line for a typical energyER51500 in the data. We se
that it is successfully compared with the power-law tail
the distribution function in both chaotic and integrable cas
however, a failure is evident forG→0, wherePcl(y→20)
50, while a purely quantum effect in resonances for t
weak coupling limit dominates with strongly diminishingG,
leading toP(G→0);const.

Finally, although the billiard is connected to perfect lea
the coupling to open channels is practicallynot perfectow-

FIG. 3. Width distribution of resonances~cross bars or open
bins!, theoretical prediction by Sommerset al. for time-reversal
fully chaotic systems withM52 ~solid line!, and classical estima
tion ~dotted line!. ~a! Open stadium billiard and its four deforma
tions. Horizontal bar indicates the average value.~b! Open circle
billiard. ~c! Open square billiard.
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ing to a diffraction effect at the corners of the openin
@31,32#: It is totally imperfect at the energy right after th
opening of a new channel in the lead, eventually leading
the perfect coupling realized only in the high-energy limit f
the same channel. In our systems, however, the diffrac
effect on the transmission through an opening is numeric
estimated to be about 10% forE5916 and less than 1% fo
E>1400@32#. Therefore it may not strongly affect the ove
all statistical features of the resonance distribution in the
ergy range that we adopted in our calculations.

In conclusion, we showed that our numerical results
the width distribution of overlapping resonances in the c
of time-reversal chaotic open billiards support the rando
matrix-theory prediction, serving as its good numerical te
s

o

n
ly

-

r
e
-

s.

In the case of integrable open billiards, however, there e
some deviations, and the agreement is perceived only for
tail of the distribution functions. This is understood quan
tatively in terms of classical decay-time distributions.
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