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Resonance poles and width distribution for time-reversal transport
through mesoscopic open billiards
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A number of resonance poles are computed for time-reversal ballistic transport through chaotic and inte-
grable mesoscopic billiards coupled to a pair of single-channel leads. The width distribution of resonances is
rigorously compared with the random-matrix-theory prediction, which has been recently obtained for time-
reversal chaotic open systems with overlapping resonances. In the case of chaotic open billiards, the distribu-
tion functions show good agreement with the random-matrix-theory prediction in all ranges of the width. In the
case of integrable open billiards, however, there exist some deviations and the agreement is perceived only for
the tail of the distribution functions. This is understood quantitatively in terms of classical decay-time
distributions.

PACS numbes): 05.45.Mt, 05.60.Gg, 73.23.Ad

The study of chaotic open billiards is interesting becausealetermined by measuring cross sections in experiments when
fully chaotic and integrable motion of noninteracting par-the resonances become more and more overlappkd2,
ticles inside ballistic cavities can be realized, simply dependthis study merely proposes analyses for future research.
ing upon the design of its boundary. It is intriguing to study ~ The quantum open billiard we wish to study consists of a
the effects of the underlying classical dynamics on quantuno-dimentional cavity coupled to continua by attached leads
trqnsport through such a system, in connection with an aprat altogether suppom! equivalent open channels. In a
plication to mesoscopic devices. N weakly [13] and imperfectlyopen limit, there have been a

In general, quantum transport coefficients, such as cofymper of measurements on resonances of microwave cavi-
ductance, in open billiards show ample oscillations as a funCgeg and the system, in general, shows isolated resonances.
tion of external parameters, see, e[d.,2]. This originates They can be fitted by the Breit-Wigner formufa4] and

from a sequential overlap of resonances in the cavity regiogimply explained based on the eigenmodes and eigenfunc-

lying inside the b|_|||ard. In order to _bette_r understand resO-. o< of a closed counterpart of the cavity5—19 (plus
nance structures, it is necessary to identify poles and analyzeerturbations by antennd8.20]). When the cavity is full
their properties in detail. Gaspard and Rice, in their pioneerp y e Y y

ing papers, obtained the location of the exact poles in thghaOtiC’ the width distribution of such resonances i.s quite
complex wave number plane for the scattering of a poimggnerally expected to follow the so-called _dlstrlbutlon
particle from a chaoticonvexrepeller consisting of three With parameterr=M(v=2M) for systems with preserved
hard discs in a plans]. To the best of the author's knowl- (broken time-reversal symmetry. The case: 1 is known as
edge, only a few reports on the polesdancaveopen bil-  the Porter-Thomas distributidr21] and has been shown to
liards have been recently published for integrable caseBe in agreement with experimental d4&2]. On the other
[4—7] and a pseudointegrable cgd&d. In the latter, the au- hand, when the cavity is weakly bperfectlyopen, we com-
thors numerically found resonances by using a simplénonly see inevitably overlapping resonances in quantum
Hamiltonian model describing a time-reversal rectangulatransport. This is the case in this paper.
microwave resonator perturbed with an attached antenna, We consider a Bunimovich stadiuf@3] and its deforma-
and attempted to compare the width distribution of the isotions as chaotic billiards, and a circle and a square as inte-
lated resonances with a random_matrix_theory predictiorgrab|e billiards, respectively. The billiard is Coupled toa pair
valid for the regime ofoverlappingresonances fochaotic ~ Of leads with-a common widtd and their orientations are
open systems withrokentime-reversal symmetrf@]. Thus  hot straightforward to avoid direct transmission; see Fig. 1.
we can say that our knowledge about statistical properties ofhe stadium billiard is characterized by the radius of a semi-
resonances for chaotic open billiards is far from satisfactory¢ircle a and the half-length of a straight sectibrirhe aspect
in connection with random-matrix-theory predictions. ratio o=lI/a is continuously tunable, keeping the area of the
In this study, we numerically obtain a number of reso-billiard A= 7a®+ 4al fixed, which ensures the same degree
nance poles for chaotic and integrable open billiards. Therf resonance density for each billiard. For a closed stadium,
we rigorously compare the width distribution of the reso-the maximum Lyapunov exponent vanishes in the integrable
nances with the exact analytical formula derived recently iimit (o=0) and reaches its maximum at the fully chaotic
the regime of overlapping resonances for chaotic open sydimit (o=1) [24]. The limit c=0 corresponds to the circle
tems with time-reversal symmetifyl0]. Although the pole billiard. In the following, we refer to the limir=1 as the
parameterization of the scattering matrix cannot be uniquelgtadium and to the cases=0.99, 0.995, 1.005, and 1.01 as
its deformations, respectively. We use scaled lengths such
that the enclosed area for each of the billiard#\is 7+ 4
*Present address: Division of Natural Science, Osaka Kyoikui.e.,|=a=1 for the stadium Therefore the length of the
University, Kashiwara, Osaka 582-8582, Japan. sides of the square billiard igm+ 4. We choose a small lead

1063-651X/2000/6@3)/30354)/$15.00 PRE 62 R3035 ©2000 The American Physical Society



RAPID COMMUNICATIONS

R3036 H. ISHIO PRE 62

(a) o

/ \ L
o s
g 00
| ¢ 6 0
B EIN
= o °
£ @
s o

) . . . .
900 1800
Er

FIG. 1. Geometry of open billiardga) Stadium.(b) Circle o -
(solid lineg and squarddotted lines. -
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width asd=0.08, which corresponds to a weakly open bil-
liard where a particle entering through one lead dwells inside N T
the cavity region for a long time before exiting. Assuming E Y e oo, I T I e
the ergodic billiards, the estimated decay length of a classical e S Fet ge =eed e
path-length spectrum isqy=140[25], which corresponds to : T e . ) K
L4/+/A=52 bounces inside the cavity. On the other hand, the Co e sl ] °. R ©
mixing length scale in the stadium billiard is expected to be o o ]
L,<100[24]. ThusL4>L,,. Therefore the particle acquires o e te e > T
chaotic and nonchaotic features through multiple scattering L e o .
with specular reflections on the boundary of the cavity, and o L . 2
this will affect its transport properties. . co. ‘ |
In quantum dynamics, the dc current passes through the S0 1800
leads. We choose the energy of the incoming wave so that En
only the first transverse mode in the leads is open. We solve . :
the time-independent Schiimger equation under Dirichlet FIG. 2. Locr_mon of resonance poles in the complex energy
. . plane. The partial magnification shows a more accurate plot of a
boundary Con.dl.tlons bas_ed on the pla_ne-_wave-expansmé}na” region near the real axi@ Open stadium billiard(b) Open
method[26], giving reflection and transmission amplitudes

- circle billiard.
as a function of the energy. The resonances are due to qua-

qbound states of the open b'”'a.rd and the;y are Identnclecirregularly in the complex energy plane in both cases, except
with the poles of the corre;pondlr;g {scittterlllng ma8{E) 3 tendency to accumulate themselves on lines. This linear
occurring at complex energi&s'=Eg+iE[" (E['<0) forthe  grycture simply comes from the coarseness of numerical
ath resonance. They are numerically obtained as the singulg{ata in the complex plane. We should also mention that some
points of S(E) by scanninge on the meshed lower complex of the poles closest to the real axis or to each offher,
plane. The positions and widths of the resonance states aggmost degeneratén the rangeE,=—0.3 (E,= —0.035 for
given by Eg and I"*(=2|E[|), respectively. In the follow- the open square billiard, not shown heme missing be-
ing, we will assumeS(E) to be a simple pole,~(E  cause of a simple numerical reason. This means that many of
—E®) ™%, for E close to a resonance energy, and choose botthe sharpest oscillations af(E) are not identifiedsee the
% and the mass of particle as unity for simplicity. more accurate plot in Fig.)2The mean resonance spacihg

In the energy range investigated in this paper, we cawalculated from our data is 1.96, 2.08, and 2.58 for the sta-
observe a number of overlapping resonances, resulting igium and its deformations, the circle, and the square, respec-
ample fluctuations in the transmission probabilfyas a tively. According to a simple comparison between Weyl's
function of the real energf of particles. To understand the density of state$~ wA/(27%2)) and 1A, about 55% of the
fluctuations in detail, the location of resonance poles is comeigenmodes are missing in the case of the stadium and its
puted in the complex energy plane, and presented in part ifeformations, about 58% in the case of the circle, and about
Fig. 2 for the open stadium and circle billiards. Each pointg6% in the case of the square. As we see in Fig. 2, the open
corresponds to an isolated resonance state. The quantum dgrcle billiard has a smaller number of sharp resonances than
cay length for the deepest poles shown in Fig. 2 is estimateghe others(including the open square billiard not shown
using the lifetimer§™~#%/I" and the velocity = J2Er/n as  herd, which can be understood from the following. When
LI"=73"v=11-15, which corresponds to 46 bounces the cavity has a rotational symmetry, the coupling of wave
inside the cavity. We see that the resonance poles are placéehctions, ¢c.q and ¢,y , Can easily induce rotational
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change of,it, to try to hold parity conservation law with 0.5
each other locally at the openings, so that resonances in such
an open billiard, in general, tend to be brd&{].

Once we obtain the location of poles in our systems, we
calculate the width distribution of resonances, where we use
poles in the energy range 7%E&Ex=< 1800 (including 490
~565 poles, 800<Exr=1800 (including 479 poles and
860< Er=2450(including 615 polesfor the stadium and its
deformations, the circle, and the square, respectively. On the
other hand, the analytical expression of the width distribution
for the overlapping resonances was obtained employing 2 . . . ‘ . . . .
random-matrix theory first for chaotic open systems with -1 -08 06 04 I-oogiil“ 0 02 04 06
broken time-reversal symmetf\8], and quite recently for
those with preserved time-reversal symmé¢i@]. In the lat- 0.5
ter case, the distribution function of scaled resonance widths T (b)
y=(7E,/A) for perfectly open systems withl =2 is given i
in Ref. [10] by P(y<0)=(2y+1+(2y—1)e*)/(4y3).
When we calculate the width distribution and compare it
with this analytical expression, we find interesting features in
its behavior, as we see in Fig. 3. In the case of chaotic open
billiards, P(I") follows I' ~? asymptotically forl'>A while
it asymptotes to a constant fbr< A, as is predicted ifil0].

We still notice small deviations for lggl'=—0.2 and
log;ol'=0.5. As previously mentioned, many of the reso- -2 ‘ - - ‘ ; s ‘ ‘
nances fol’=2|E,|<0.6 were not identified in the calcula- 108 06 -04 I;,%ir 0 02 04 08
tion, although they should also be included to compare with
the analytical result. The difference of lg&(I") between 05
the numerical and the analytical results for that region is
roughly estimated as 0.25 in Fig. 3a). This corresponds to ot
a 44% decrease ¢1(I") and almost agrees with the estima-
tion of the number of missing eigenmodes, as is mentioned
above. Therefore we expect the decreasePgl”) for
log;gl'= —0.2 in the numerical result, and relatively the in-
crease by a constant for a lardérregion as a result of the
probability conservation oP(I"). (This argument also holds 15l
true in the case of integrable open billiandEaking this into
account, it seems reasonable to say tdt), computed for 2 e |
the chaotic open billiards, is in good agreement with the -1 -08 -06 04 -02 0 02 04 06
analytical prediction by random-matrix theory in all the logn T
ranges _O_f width” shown in Fig. 3. In the ca_sze of Integra_lble FIG. 3. Width distribution of resonancesross bars or open
open billiards,P(I") also seems to followl “ asymptoti-  pjng), theoretical prediction by Sommet al. for time-reversal
cally for I'>A; however, for the smaller’ region the devia-  fy|ly chaotic systems wittM =2 (solid line), and classical estima-
tions from the analytical expression by the random-matrixion (dotted ling. (a) Open stadium billiard and its four deforma-
theory are prominent and the behavior no longer shows anyons. Horizontal bar indicates the average val{®.Open circle
universality[see Figs. @) and 3c)]. This nonuniversal be- billiard. (c) Open square billiard.
havior is typical for integrable open billiards and especially
sensitive to the symmetry restriction of the system. For ex-

; . o : c c
ample, in the case of the open circle billiard, the rotational Py (y<0)= _zeXp(_>’ (1)
symmetry of the cavity boundary results in a considerable y y
reduction of the number of resonances with srhialas men-
tioned above. wherec=nl"¢|/(2A) andl' =h/7q=(h/Lg) V2ER/ . For

One may show that the physical meaning of the powerly|>1, P (y)*y 2. In Fig. 3, Eq.(1) is plotted with a
law tail, ~I" 2, turns out to be due to classical processes ofdotted line for a typical energg= 1500 in the data. We see
exponential escape typical for fully chaotic syste@8], as  that it is successfully compared with the power-law tail of
was pointed out if9]. In weakly open billiards, however, the distribution function in both chaotic and integrable cases;
such an exponential escape is observed not only for chaotltowever, a failure is evident fdr—0, whereP(y— —0)
caseq 2], but also for integrable cas¢29] in a time scale =0, while a purely quantum effect in resonances for the
corresponding to a path length up to at least a few hundredsveak coupling limit dominates with strongly diminishig
Using a relatiort~#/T"= — wh/(2yA), this escape time dis- leading toP(I'—0)~const.
tribution P(t) dt=(1/7q) exp(—t/7y) dt with a lifetime 74 can Finally, although the billiard is connected to perfect leads,
be transformed into alassicalwidth distribution[30]: the coupling to open channels is practicallgt perfectow-

Iong(l")
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ing to a diffraction effect at the corners of the openingsin the case of integrable open billiards, however, there exist

[31,32: It is totally imperfect at the energy right after the some deviations, and the agreement is perceived only for the

opening of a new channel in the lead, eventually leading taail of the distribution functions. This is understood quanti-

the perfect coupling realized only in the high-energy limit for tatively in terms of classical decay-time distributions.

the same channel. In our systems, however, the diffraction

effect on the transmission through an opening is numerically The author gratefully ?CKnpwledgeS E: J. Heller and L.

estimated to be about 10% f&=916 and less than 1% for Kaplan for their many incisive suggestions. The author

E=1400[32]. Therefore it may not strongly affect the over- thanks E. J. Heller and A. IRez for improvements of the

all statistical features of the resonance distribution in the enanuscript. Numerical research for this work was carried out

ergy range that we adopted in our calculations. at the facilities of the Yukawa Institute and Data Processing
In conclusion, we showed that our numerical results forCenter in Kyoto University. This work was partially sup-

the width distribution of overlapping resonances in the casgorted by a Sasakawa Scientific Research Grant from the

of time-reversal chaotic open billiards support the randomJapan Science Society, and by Sending Overg&ort

matrix-theory prediction, serving as its good numerical testsTerm) from the Yamada Science Foundation.
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